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Abstract. Coronal anatomic slices of structural MRI images clearly show the topographical structures of the

Hippocampus and Amygdala, which are essential for early diagnosis of Alzheimer’s disease (AD). MR coronal

sections are best appreciated for studying the complex topographical relationships of the amygdala and the

topographical structures of the hippocampus, which helps in the early detection of disease. Early diagnosis helps

prevent the disease’s progression to its final stage. It allows the patient to be aware of the severity of the disease

and can take the necessary therapeutic medications to prevent its progression. A coronal view study of MR

images is proposed in this paper for early diagnosis of disease using a wavelet-pooling-based multi-path and

multi-scale convolutional neural network. This work aims to perform a three-way classification of 2D coronal

slices of MRI images to diagnose Mild Cognitive Impairment, AD, and Normal Control in a single algorithm

and learn the brain-affected regions through Gradcam visualization. wavelet-pooling is utilized to extract the

texture details of the image and thus provide spatial attention to the texture features of the image, which is

impossible using Max-pooling or Average-pooling. Multi-scale feature learning is incorporated using parallel

multiple low-rank convolutional kernels to capture varying scales of atrophy regions. Multi-path mode com-

pensates for the early loss of features and avoids vanishing gradient problems. The proposed model is trained

and tested on the ADNI dataset comprising 900 subjects to give an accuracy of 96.5% with ten-fold cross-

validation. The multi-scale and multi-path methods significantly reduce the number of learnable parameters.

Keywords. Alzheimer’s disease; mild cognitive impairment; wavelet-pooling; multi-scale CNN; multi-path

CNN.

1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative

disease mainly occurring in the elderly. As per WHO

statistics, around 55 million people will be affected by

dementia worldwide in 2025. It is anticipated to double

every 20 years, reaching 78 million by 2030 and 139 mil-

lion by 2050. AD is the leading cause of dementia and

contributes to 60–70% of cases. It deteriorates cognitive

function and causes memory impairment. It is a progressive

disease in which, at its late stage, they lose the complete

cognitive ability and memory and depend on others for

daily activities. AD has no cure but can be delayed by

taking necessary medications if known at earlier stages.

Changes in the brain can begin years before the first

symptoms appear. Mild Cognitive Impairment (MCI) is the

precursor of AD, and it is crucial to know the disease at this

stage to prevent further progression. Structural MRI is an

excellent biomarker to predict AD, especially in the MCI

stage, since it gives the anatomic structure of atrophy

regions. Even though SMRI gives the structural details,

identifying the MCI stage is challenging since only subtle

changes exist between AD, MCI, and NC. Ternary classi-

fication can classify three classes since only a single
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algorithm is required to classify them. It also has the added

advantage of training with both MCI and AD, which helps

to learn the atrophy features common to both classes. Often,

Alzheimer’s disease symptoms are dismissed as part of the

normal aging process [1]. We can see the difference

between regular aging changes and Alzheimer’s patients in

the MRI slices by including Normal Control (NC). Coronal

studies of MRI images can reveal the role of the amygdala

and hippocampus in early disease detection. Also, it can

bring forth other regions of the disease.

Machine learning techniques have become attractive for

computer-assisted diagnosis as they can find the correlation

between regions and automate the classification process.

Thus, it is widely used to analyze neuropsychiatric disorders

and diagnose them. Although several models are used in the

literature, Support Vector Machine (SVM) and deep learn-

ing-based models are prominent among those that give good

results for Alzheimer’s detection. SVM needs hand-crafted

features extracted from the images that may be included in

three categories: voxel-based, vertex-based, and ROI-based

methods [2]. In the voxel-based method, the features are

defined at the level of an MRI voxel, and probabilities are

assigned to each tissue class (gray matter, white matter, and

CSF) [2]. The vertex-based method measures the cortical

thickness of the regions used as features. In [3], texture fea-

tures of cortical thickness in the various areas are trained

using an SVM classifier to give good results. But the disad-

vantage is the need for domain expertise to find the region of

interest area to extract the cortical thickness. The ROI-based

method uses segmentation of the hippocampus, Amygdala,

or any other regions relevant to the disease to measure vol-

ume, shape, and texture and uses any machine learning

classifier to classify the features. In [4] SVM classifier

predicts dementia based on the volume, shape, and texture

features. Combined volume and texture gave the maximum

Area Under the Curve value, and texture can be used to predict

the earlier stage of AD, reflecting pathological changes of

dementia such as neurofibrillary tangles and amyloid-beta

plaques. Even though the SVM classifier performs well, it is

criticized for performing poorly on raw data and needs good

feature engineering to extract informative features.

Deep learning is an end-to-end learning model where the

feature extraction and classification are automated by the

network itself [5]. The primary advantage of end-to-end

learning is optimizing all steps in the processing pipeline,

leading to optimal performance. Early deep learning mod-

els [6] needed feature extraction before feeding the one-

dimensional feature vector to the network. Also, it may

flatten 2 Dimensional (2D) and 3 Dimensional (3D) images

into one single vector to learn and classify. Handcrafted

feature extraction leads to data scarcity and high dimen-

sionality, and the need for feature selection throws off

many features [7]. Convolutional Neural Networks (CNN)

is an end-to-end, powerful deep learning method where

spatial relationships of the image are utilized, and features

are learned automatically from the image. With a successful

implementation of AlexNet [8] for natural image classifi-

cation, CNN has expanded its application to diverse fields.

CNN is famous for 2D images application, and now it has

extended to 3D images like MRI. In AD diagnosis, the

paper [9] uses 2D image slices of MRI to feed into the

Inception v4-based architecture, which consists of 487

layers to classify AD and NC. The ensemble learning

method combines CNN in [10] to learn features using 2D

CNN from sagittal, coronal, and axial planes. 2D images

are readily available in clinical settings. The 3D images can

provide more information than 2D images, but the com-

putational load and high dimensionality lead to less use of

such images in clinical settings [9]. A 3D CNN pretrained

with a 3D convolutional autoencoder is used to perform

binary and three-way classification [11]. To reduce the

complexity of 3D CNN architecture and increase the fea-

ture learning capability, a long-range dependency mecha-

nism that uses ResNet as a backbone is used in [12] to

detect the MCI stage. The complexity is reduced using a

P3D block, which decouples a 3D convolution into two 2D

convolution operations. Some work [13, 14] use patch-

based methods to reduce the complexity, but the image size

is still big. Therefore, the 2D image-based methods are

preferable over the 3D image for reducing the complexity

and learning features at higher levels of depth. Texture-

based features can enhance efficiency, especially for early

AD diagnosis [4, 15]. Both works have used Hippocampus

texture features to classify AD and MCI. But both works

used handcrafted features using a time-consuming seg-

mentation method, which needs domain expertise. CNN

with wavelet-pooling is proposed in [16, 17], which can

perform texture-based image classification where texture

content is mainly preserved and able to provide a reduction

in size without any translational invariance. wavelet-pool-

ing also increases computational efficiency and regulates

the overfitting of the network [18]. AD involves the

degeneration of different brain parts. The structures affec-

ted are of varying scales, and multi-scale networks can

extract ROI at different scales, which are local and global

[19]. Further, to reduce the computational complexity and

trainable parameters and increase the feature learning

ability, a multi-scale and multi-path ensemble method is

proposed in [20]. By taking advantage of the texture-based

feature and multi-scale and multi-path methods, we propose

a multi-scale multi-path wavelet-pooling-based method to

perform a three-way classification of AD, MCI, and NC. In

this paper, we propose

• A coronal study of AD to diagnose the disease at an

early stage and markings of biomarkers involved in the

disease.

• Texture-based feature learning incorporated using

wavelet-pooling.

• A comparison study of different pooling methods that

showcases the capability of wavelet-pooling in AD

detection.
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• A multi-scale and multi-path method to enhance the

early detection of the disease.

2. Methodology

2.1 Dataset

Data used to prepare this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)1

database (adni.loni.usc.edu). The ADNI was launched in

2003 as a public-private partnership led by Principal

Investigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether serial MRI, PET, other

biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of

MCI and early AD. The dataset is taken from ADNI 1 and

ADNI 2 randomly. 200 NC from ADNI 1 and 100 from

ADNI 2. 300 MCI from ADNI 1. 170 AD from ADNI 1,

and 130 from ADNI 2. A total of 900 subjects with T1-

weighted MRI image scans were downloaded, of which 300

are AD, 300 are MCI, and 300 are NC. The demographic

details are shown in table 1. The preprocessing steps were

conducted using freesurfer software: Motion correction,

Non-uniform intensity normalization, Tailairach Transfor-

mation, Intensity Normalization, and Skull Stripping.

Further, we found that all images don’t lie in the same

orientation. So, non-linear registration was performed using

FSL software to orient with the MNI152 template and

obtain an image size of 182�218�182. 30 coronal slices

are extracted from the mid-temporal region of the brain

MRI, which covers the entire hippocampus area. Coronal

slices of NC, MCI, and AD are shown in figure 1.

2.2 Proposed method

This work proposes a multi-path and multi-scale wavelet-

pooling-based CNN architecture to classify AD, MCI, and

NC using T1-weighted MRI 2D coronal slices. There are

several advantages to using 2D images over 3D images,

even though 3D images have more information. As 3D

images consist of a huge dimensionality, it is required to

build deep layers to learn good representation for efficient

classification. Still, it is infeasible due to the computational

complexity, limited availability of computational resources,

and GPU memory. The processing time requirement and

computational resources for 2D images are lower and can

be used in most clinical settings. Another advantage is that

such images are widely applicable in clinical settings rather

than 3D images. Also, the availability of numerous standard

public datasets like ImageNet, CIFAR, and classic archi-

tectures like GoogleNet, ResNet, etc., aids 2D image-based

methods. We use 2D coronal slices of the Medial Temporal

Lobe (MTL) area. The algorithm will learn the MTL

Atrophy scale, a standard clinical measure for AD-related

neurodegenerative diseases. As per the National Institute on

Aging and Alzheimer’s Association research guidelines

[21], this scale is used as evidence for AD-related neu-

rodegenerative disease. MTL-based detection is commonly

used and more specific to AD diagnosis, even though other

areas provide AD information. The other atrophy areas

indicate inter-subject variability [22] and are inconsistent

with AD. The algorithm learned with such patterns may

confuse and lead to a decrease in accuracy. We extracted 30

slices of coronal views from the MTL starting from the

hippocampus corpus area (from the level of anterior pons).

We can cover the entire hippocampus area, which is the

most useful information. The slices are converted to

224�224�3 standard image size by stacking the same slice

three times and using zero padding. Most CNNs require

high parameters, more computational load, and huge deep

layers to achieve the desired output, limiting further

applications. Here we use the concatenation of shallow and

deep layers in a multi-path, which helps avoid the vanishing

gradient problem and fuses multi-layer features. The net-

work consists of low-rank kernels used at multi-scale levels

to increase the feature extraction capability. Also, low-rank

kernels compress the network with fewer parameters and

space [20]. Finally, wavelet pooling enables extracting the

texture features of disease-related regions.

2.3 Proposed architecture

As shown in Figure 2, the proposed architecture uses a

224�224�3 size image as input. It has two paths to

incorporate multi-scale and multi-path computation; the

primary path includes two Single-Scale Convolution Layers

Table 1. Demographic details of subjects.

AD MCI CN

Age 75± 7.81 76.15± 6.69 75.3 ± 7.8

Gender 169 M and 131 F 206 M and 96 F 164 M and 136 F

Figure 1. Samples of coronal slices after preprocessing.
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(SSCL) followed by one multi-scale convolution layer and

two SSCL. Finally, it is converted to a one-dimensional

vector by averaging the feature maps for ternary

classification. The other path includes a single-scale con-

volution whose features are concatenated with the multi-

scale features on the primary path, which helps to learn

Figure 2. Schematic of proposed multi-scale and multi-path wavelet-pooling based Architecture.
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local and global features [23]. The multi-path also helps to

avoid the vanishing gradient problem that may occur in the

primary path while going through many layers.

First, an SSCL is used in the main path using 3�3 size

with eight filters to give eight feature maps. The second

SSCL provides 16 feature maps using 3�3 size with 16

filters. Subsequent low-rank kernels extract features at

multiple scales using 1�1, 3�3, and 5�5 with 32 filters

each to give 96 feature maps at the output. A parallel path is

formed from the output of the first SSCL layer in the pri-

mary feedforward network using a 9�9 size of 32 filters,

which generates 32 feature maps. The multi-path output is

merged depth-wise with the multi-scale output in the pri-

mary path to produce 128 feature maps. The shortcut

connection combines early and late features, extracting

local and global structures from the data. Next, the com-

bined features pass through two SSCL layers to give 128

and 256 feature maps, respectively. wavelet-pooling is

included after each convolutional layer to cut short the

spatial dimension by retaining the essential texture features.

The primary path has one wavelet decomposition level,

whereas second-level decomposition is utilized in the

multi-path. Global average pooling is applied to the average

of all feature maps from the layers to provide a single

feature vector of size 256. Global average pooling is pre-

ferred over a fully connected layer as the former will reduce

overfitting by reducing the total number of parameters in

the model. It also reduces the computational complexity of

the architecture. Finally, AD, MCI, and NC classifications

are done using a softmax. The average of 30 slices for each

subject is considered while taking the output. ReLu is the

activation function used after each convolution process. It

suppresses all the negative values to zero and passes the

positive values. ReLu increases the speed and accuracy of

the computation compared to other activation functions and

exhibits more gradient shifts. Batch normalization helps to

maintain the stability of the network.

2.3.1 Advantages of multi-path structure The multi-

path connected from the first SSCL layer to the multi-scale

layer output helps compensate for the loss of global features

incurred while moving through a single-path convolutional

layer. There is a possibility of focusing more on the

hippocampus region alone in a brain MRI image since the

anatomical boundaries of the hippocampus are distinct in

T1-weighted MRI images [24]. It may lead to the loss of

information from other regions of the MRI, which is critical

for the detection of AD that is MCI. To elevate the problem

of learning local patterns alone and shrinking to a particular

region while going deep in a single path convolution layer,

multi-path enables us to provide the features learned at the

early part of layers [25–27]. Hence, increasing the learning

capability of the architecture. A big kernel size of 9�9 is

chosen for the multi-path to extract global structures on

early AD detection. Another advantage of the parallel path

is to reduce vanishing gradient [28], which is always a

problem for deep learning architectures. No gradient

changes towards the deeper layers will result in poor

architectural training. Parallel path connections go through

fewer non-linear activations, reducing the squashing of the

derivatives and improving the derivative of the overall

architecture.

2.3.2 Advantages of multi-scale structure Learning

features at different scales enables the architecture to

explore local patterns at different dimensions [19]. The

Alzheimer’s brain MRI image has different atrophy regions

of various sizes and structures throughout the image. So it

is challenging for a single-scale convolution kernel alone to

extract complex features for early AD detection. So, in the

proposed architecture, we have included a multi-scale

convolutional layer to focus on sparse local atrophy regions

pertaining to the disease conditions. We use three different

filter sizes for this purpose. First, the 1 � 1 filter size

enables channel-wise pooling to increase the feature maps

from 16 to 32 without losing dimensions. Next 3 � 3 size

filter learns larger local patterns related to the disease.

Finally, the expanded 5 � 5 size filter can learn even larger

local structures. The feature maps obtained in all three

filters are concatenated depth-wise. Zero padding is applied

to maintain the same output dimension for all the feature

maps. One hundred twenty-eight feature maps of different

scales are obtained through this operation, which leads to

learning various local structures and is very useful for MCI

detection.

2.3.3 Wavelet-pooling Earlier identification of people at

risk of AD can be found using texture details of the

hippocampus, precuneus, and Posterior Cingulate Cortex

(PCC) with more accuracy than the hippocampal volume

measure [29]. In [4], it is shown that not only the volume and

shape of the hippocampus but also texture can be used for

early prediction of the disease. So, wavelet-pooling is used in

our architecture to extract texture features and improve early

detection of the disease [29]. The selection of wavelet

functions depends on the textural properties of the image.

Daubechies wavelet can provide fine spatial frequency

localization with narrow high and wide low frequencies

simultaneously [30]. Besides, they are more efficient in

recognizing fine structure details, and usage of overlapping

windows results in capturing all changes in the pixel

intensities. These characteristics of the wavelet enable us to

choose an orthogonal four-tap Daubechies filter for obtaining

the very subtle atrophy regions of the disease. We have

experimented with the Haar wavelet, but it resulted in low

performance. Haar wavelet has only two filter coefficients and

does not have overlapping windows, capturing only adjacent

pixel variations, so it is unsuitable for obtaining texture

properties. The Daubechies-4 transform has four wavelet and

scaling coefficients. Wavelet-based pooling can replace max-
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pooling and average-pooling, as it can improve network

efficiency by incorporating texture features of atrophy regions

and aiding early detection at the MCI stage [16, 31]. wavelet-

pooling reduces the feature map dimension with fewer

discontinuities and artifacts, thereby enhancing the

classification accuracy and improving the regularization of

the network [18, 32]. This work uses 2D Discrete Wavelet

Transform (DWT) to implement wavelet-pooling. The

mathematical expression for DWT is given as

Wwðc; dÞ ¼
1
ffiffiffi

c
p

X

n

w� n� d

c

� �

ð1Þ

where c and d represent the scaling factor and translational

parameter, respectively. wð:Þ is the basic wavelet function,

and w�ð:Þ is the conjugate function of wð:Þ. The 2D DWT is

computed using the row-column method, in which first, the

1D DWT coefficients are used to transform the row data of

the image and then perform column transform to get the

transformed image. From paper [33] 2D DWT for an image

x 2 R
m�m

can be defined as

X ¼ WTxW ð2Þ

where W ¼ L
H

� �

we get

X ¼ LxLT LxHT

HxLT HxHT

� �

¼
X j
/ X j

H

X j
V X j

D

" #

ð3Þ

Where X j
/ is the approximation component, X j

H , X j
V and X j

D

are Horizontal, Vertical and Diagonal detail components of

the image.

2.3.4 Loss function We have three classes, AD, MCI,

and NC, to be classified. So we have taken categorical

cross-entropy as our loss function. The categorical cross-

entropy loss is shown in the equation.

LðwÞ ¼ � 1

M

X

M

k¼1

X

3

i¼1

½yk
ijlogðf ðxk

ij;wÞÞ� ð4Þ

Where xij is the jth coronal slice of ith class of brain MRI and yij
is the true label of the slice. M corresponds to the total number

of samples of each batch, and w is the weight parameter.

During the testing and validation process, the average proba-

bility of all slices of each subject (xi1, xi2, xi3,....,xi30) is taken

into consideration for diagnosing AD, MCI, and NC.

3. Results

A multi-path and multi-scale architecture with wavelet-

pooling is proposed to classify AD, MCI, and NC. The

algorithm’s performance is evaluated using the ADNI

dataset by a 10-fold cross-validation method. The dataset is

split as per the patient level, and the output is taken by

averaging the thirty slices which belong to each subject. A

total of 900 subject MRI scans are used for training and

testing (300 AD, 300 MCI, and 300 NC). 30 coronal slices

from the mid-temporal lobe of each subject are extracted

and resized into 224�224�3. So there are, in total, 27000

images. Each slice is labeled AD, MCI, or NC; it is aver-

aged for each subject while obtaining results. We validated

the algorithm’s performance using average weighted

accuracy, obtained after ten-fold cross-validation. The

accuracy is computed by

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð5Þ

Further, a detailed performance evaluation is validated

using the metrics precision, recall, and F1 score, as given

below.

Precision ¼ TP

TPþ FP
ð6Þ

Recall ¼ TP

TPþ FN
ð7Þ

F1 score ¼ 2 � Precision � Recall
Precisionþ Recall

ð8Þ

The proposed method has an average accuracy of 96.52%
with only 0.484 million learnable parameters, which out-

performs most existing works. The validation accuracy for

the ternary classification of the proposed model with dif-

ferent pooling techniques is demonstrated in table 2. The

Daubechies-4 wavelet achieved a maximum accuracy of

96.52%. The wavelet-pooling techniques can perform bet-

ter than the max-pooling and average-pooling methods. The

detailed performance study is shown in table 3 with other

pooling techniques to show wavelet-pooling efficiency

using the Daubechies-4 wavelet in classifying AD, MCI,

and NC. The precision, recall, and F1-score obtained for the

proposed method with Daubechies-4 wavelet are 0.967,

0.966, and 0.966, respectively. The high precision and

recall values determine the model’s ability to discriminate

among the three classes. The high recall value of MCI, i.e.,

0.957, determines the potential of the model to perform

early prediction of the disease without much error.

The high precision and recall values for MCI claim that

this architecture is good for early diagnosis of the disease.

Performance comparison with other pooling techniques is

Table 2. Validation accuracy for ternary classification.

Pooling method Mean accuracy(%)(SD) (AD, MCI, NC)

db4 wavelet-pooling 96.52 (0.8)

Haar wavelet-pooling 94.6 (1.1)

Average-pooling 94.5 (2.2)

Max-pooling 91.8 (1.8)
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also shown in Table 3, which confirms the feature extrac-

tion capability of wavelet-pooling using the Daubechies-4

(db4) wavelet. Compared to the Haar wavelet, db4 gives

more results because it uses overlapping windows to

average more pixel intensities than the Haar wavelet to

reflect all changes between pixels. The db4 wavelet has

four wavelet coefficients, whereas Haar has only two. Max-

pooling and average-pooling are simple to implement and

take less computational load but depend on neighborhood

subsampling. This leads to loss of information and intro-

duces discontinuities and artifacts, resulting in less classi-

fication accuracy [18], as visible in table 2.

4. Discussions

The proposed work utilizes multi-scale, multi-path, and

texture features to efficiently classify AD, MCI, and NC.

The feature extraction ability of multi-scale and fusing of

multilayer features using multi-path mode helps to learn

local and global features relevant to disease [25]. The

vanishing gradient problem is also solved using multi-path

mode. Low-rank 1�1, 3�3, and 5�5 kernels replace large-

rank kernel computations with lesser parameters. A

comparison is made in table 4 with existing standard

architectures. Each model pretrained with the ImageNet

dataset is used to train with the MRI dataset. The

table shows that the proposed model performs better than

any other standard architecture because of multi-scale and

multi-path techniques with wavelet-pooling. Training big

architectures and getting efficient output with a limited

dataset is challenging. The multi-scale feature extraction

and multi-path fusing of early features enable the model to

perform well with fewer parameters and without going into

much deeper layers. It is fast and easy to train the archi-

tecture from scratch and takes only 25 epochs to converge

to the optimum global value.

Another Comparison is made with existing works in

table 5 which shows that our method with 2D images and

2D CNN architecture can achieve higher accuracy for

ternary classification than with 3D images and 3D CNN-

based method. This is because of the architecture efficiency

and selection of slices from maximum atrophy regions.

Selection of coronal slices from the medial temporal lobe

area contributes to a significant portion of AD which covers

most of the hippocampus area. So the best way to assess the

Table 3. Performance comparison of different pooling methods.

Pooling method Parameters AD mean (SD) MCI mean (SD) NC mean (SD) Weighted average (SD)

Precision 0.968 (0.01) 0.968 (0.01) 0.964 (0.01) 0.967 (0.008)

db4 wavelet-pooling Recall 0.969 (0.01) 0.957 (0.02) 0.971 (0.01) 0.966 (0.009)

F1-score 0.969 (0.009) 0.963 (0.008) 0.967 (0.008) 0.966 (0.009)

Precision 0.945 (0.02) 0.945 (0.02) 0.954 (0.03) 0.948 (0.01)

Haar wavelet-pooling Recall 0.957 (0.02) 0.936 (0.03) 0.942 (0.02) 0.95 (0.01)

F1-score 0.946 (0.02) 0.941 (0.01) 0.946 (0.015) 0.95 (0.013)

Precision 0.95 (0.04) 0.942 (0.05) 0.96 (0.03) 0.952 (0.016)

Average-pooling Recall 0.96 (0.02) 0.932 (0.07) 0.944 (0.05) 0.944 (0.02)

F1-score 0.953 (0.01) 0.933 (0.03) 0.95 (0.02) 0.946 (0.02)

Precision 0.938 (0.03) 0.9 (0.04) 0.927 (0.03) 0.925 (0.01)

Max-pooling Recall 0.911 (0.04) 0.928 (0.03) 0.916 (0.04) 0.919 (0.01)

F1-score 0.925 (0.02) 0.916 (0.02) 0.919 (0.02) 0.92 (0.01)

Table 4. Comparison of the proposed model with existing Standard networks on ADNI Dataset.

Methods Precision (Mean) Recall (Mean) F1-score (Mean) Accuracy(Mean) Parameters

(Millions)

Proposed model 0.967 0.966 0.966 0.9652 0.484

VGG16 [35] 0.884 0.874 0.894 0.877 15.04

Xception [36] 0.815 0.815 0.815 0.813 21.9

ResNet50 [37] 0.88 0.87 0.876 0.873 24.7

NASNetMobile [38] 0.756 0.742 0.751 0.746 4.87

EfficientNetB0 [39] 0.933 0.926 0.926 0.926 4.7

DensNet121 [40] 0.83 0.82 0.82 0.821 7.03
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atrophy of the medial temporal lobe is by taking coronal

slices of T1-weighted MRI [34]. Also, 2D images are more

applicable in clinical settings than 3D images due to their

availability. This justifies using 2D images of the brain for

doing this work.

4.1 Computational cost of the proposed network
with existing pre-trained networks

The computational cost of the proposed method is com-

pared with pre-trained standard architectures in table 6. Our

approach has low computational costs regarding parame-

ters, computational time, and memory utilization. To

evaluate the computational load with pretrained networks,

we have considered total learnable parameters, Floating

Point Operations Per Second (FLOPs), GPU memory, and

Model weight memory. The complexity of the network

architecture is determined by its trainable parameters; the

more parameters, the more complexity. As the table shows,

our model requires significantly fewer parameters when

compared to VGG16, Xception, ResNet50, NASNetMo-

bile, EfficientNetB0, and DenseNet models. The proposed

network comprises only 4,84,595 learnable parameters,

decreasing the model complexity. The CNN execution time

is measured using FLOPS, which tells the floating point

operations required by the system. The proposed method

has floating point operations of 0.0233 BFLOPs, which is

lower than all standard networks. The computational

resource utilization is measured using GPU memory and

memory for model weights. The proposed method utilizes

only 1.50 GB of GPU memory, much less than all others.

The model weight memory is substantially less, with

1.8486 MB.

4.2 Grad-CAM for qualitative analysis

Gradient-weighted Class Activation Mapping (Grad-CAM)

describes the internal architecture of the proposed archi-

tectural model by attention-weighted visualization to

localize relevant image regions in the feature maps

[13, 46–48].

Figure 3 describes the major brain-affected AD, MCI,

and NC regions in coronal slices. Thirty coronal slices of

the mid-temporal region were selected for AD, MCI, and

NC classification. The highlighted areas of heat maps show

that the hippocampus and amygdala areas are the most

affected part of the brain, and it helps discriminate between

the classes. In figure 3a, Slice No. I is cut through the

Table 5. Comparison with existing works.

Methods Accuracy Modality Techniques used

Janani et al [5] 79 MRI, Genetic and clinical 3D CCN and Autoencoder

Juan Song et.al [41] 74.54 MRI?PET Fusion using 3D CNN multi-scale

Karasawa et al [42] 87 MRI 3D CNN with 39 layers

Hosseini-Asl E [11] 89.1 MRI 3D CNN with 3DCAE

Adrien Payan [43] 85.53 MRI 2DCNN

H.Lei et al [44] 85.30 MRI Multitask Sparse Low rank learning

Billone et al [45] 91.85 MRI DemNet 2DCNN

Proposed method 96.52 MRI Multi-scale and multi-path 2D CNN

Table 6. Comparison of the computational cost with pre-trained networks.

Model

Trainable

parameters

No. of FLOPs

(BFLOPs)

GPU Memory

Requirement(GB)

Memory Required by Model Weights

(MB)

VGG16 [35] 138,357,544 15.50 1.6186 57.38

Xception [36] 23,851,784 11.00 1.6034 87.42

ResNet 50 [37] 25,636,712 3.8 9.2258 226.92

NASNetMobile

[38]

1,115,139 0.749 8.263 83.83

EfficientNetB0

[39]

7,21,923 0.3066 5.9924 18.2018

DenseNet121

[40]

5,90851 0.0567 11.910 29.099

Proposed method 4,84,595 0.0233 1.5075 1.8486

Highlighted the results of proposed method
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anterior columns of the fornix, and the highlighted part

shows the affected right amygdala area. The highlighted

part also shows the enlargement of the temporal horn region

of the lateral ventricles. It confirms with the existing ref-

erences of AD diagnosis that the enlargement of the lateral

ventricular region increases more while progressing to AD

than NC. In Slice No. II, the left hippocampus is seen

highlighted. Slices III and IV indicate right hippocampus

has been affected. Finally, slice V reflects the thalamus area

as an atrophy region. In AD, the hippocampus region is the

most discriminated region. The atrophy caused due to the

hippocampus volume reduction by 15–30% than an NC

[34] will result in a significant change in tissue character-

istics which help in texture classification of AD. Since there

is a drastic change in the volume and thickness of the

hippocampus region, the central affected region is high-

lighted in the AD coronal slices. The hippocampus

structure is easier for automated algorithms to identify than

the amygdala, entorhinal cortex, or parahippocampal gyrus,

as the anatomical boundaries of the hippocampus are dis-

tinct on T1 weighted MRI.

Figure 3b represents the visualization of Grad-CAM for

MCI individuals. In the case of MCI, we can see that the

left and right amygdala is highlighted in slice no. II and III

show that the amygdala texture properties can be used for

early disease prediction. Amygdala is affected in the early

stage, due to which neuropsychiatric problems are preva-

lent in the mild stage of AD [5]. Slice No. I give the

cingulate gyrus the highlighted region. The anterior cin-

gulate gyrus is part of the motivation, attention, and

behaviour network and is associated with the amygdala.

The posterior cingulate gyrus is part of the posterior net-

work of learning and memory and is related to the Hip-

pocampus. Slice No. IV and V indicate the hippocampus

region as the discriminating region. So in MCI, both

amygdala and Hippocampus play a vital role in determining

the stage, and the cingulate gyrus also aids in prediction.

Figure 3c shows the heat map of NC, which reveals that the

Hippocampus and amygdala are the main atrophy regions

that help discriminate the three classes.

5. Conclusion

This study proposed a novel architecture for the ternary

classification of AD, MCI, and NC using 2D MRI images.

A multi-scale and multi-path architecture with wavelet-

pooling is proposed to increase the feature extraction

ability, prevent vanishing gradient problems, and reduce the

computation load. The main path has multi-scale feature

extraction, and the parallel path fuses the early features

with multi-scale features to learn local and global features.

The wavelet pooling ensures the extraction of the texture

features of the MCI and AD atrophy regions. The Daube-

chies-4 wavelet gave the maximum efficiency for the

architecture due to its orthogonal and compact nature.

Figure 3. Saliency map.
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wavelet-pooling can replace Max-pooling and Average-

pooling, especially for medical image applications, as it

increases the efficiency of the network regardless of

computational load. The heat map confirms the hip-

pocampus and amygdala areas as the most affected regions,

which helps to discriminate the three classes and aids in the

early prediction of the disease. The high accuracy, preci-

sion, and recall values ensure that the 2D coronal slices can

be used for early AD detection without depending on 3D

images. In the future, we aim to use a multi-modal

approach to learn the early prediction of AD.
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